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Abstract 

We have  elicited a reliable  Raman  spectral  signature  for 
glucose in rabbit aqueous humor  across  mammalian 
physiological  ranges in a rabbit  model stressed by recent 
myocardial  infarction.  The  technique  employs  near 
infrared  Raman  laser  excitation at 785 nm, multivariate 
analysis,  non-linear  artificial  neural  networks  and  an  offset 
spectra  subtraction  strategy.  Aqueous  humor  glucose 
levels  ranged  from 37 to 323 mg/dL.  Data  were  obtained 
in 80 UL samples  to  anticipate  the  volume  constraints 
imposed by the  human  and  rabbit  anterior  chamber  of 
the  eye.  Total  sample  collection  time was 10 seconds 
with total  power  delivered to sample of 30 Mw. Spectra 
generated from the  aqueous  humor  were  compared 
qualitatively  to  artificial aqueous  samples  and  an 
excitation  offset  technique was devised  to  counteract 
broadband  background  noise  partially  obscuring the 
glucose  signature.  Feature  extraction  and  data  analysis 
were  accomplished using second  order  Savitsky-Golay 
derivatives,  linear  multivariate  analysis  (partial  least 
squares fit) and  non-linear  (artificial  neural  network) 
techniques.  Predicted  glucose  levels  correlated  well with 
expected  glucose  concentration (R2= 0.98, n=32) . 

INTRODUCTION 

Non-invasive  measurement of glucose  metabolism by 
any  method  (including  optical  spectroscopy techniques) 
remains  an  elusive  goal.  Blood  and  most  excreted fluids 
contain  numerous  optically  active  and  fluorescing 
substances  capable of obscuring  glucose  spectral 
signatures.  Aqueous  humor (AH) filling the  anterior 
chamber of the  eye  between  the  lens  and  the  cornea, 
however,  contains  relatively  few  optically  active 
molecules.  These  are  primarily  glucose,  lactate, 

ascorbate,  and  urea.'  Glucose  concentration in AH 
appears  linearly  related  to  plasma  glucose  levels in animal 
studies and  the  rate  constant  for  transport of glucose 
into AH from  the  plasma is not  affected by diabetes.* 
Lactate  and  urea  levels in AH appear  to  vary with blood 
levels, while ascorbate is concentrated in AH by active 
transport  mechanisms.  These  facts,  combined with a 
spectroscopically  accessible  location  behind the 
relatively  optically  clear  cornea  make AH a reasonable  site 
to  attempt  non-invasive  analysis of glucose  metabolism. 

The  potential  for  non-invasive  estimation of blood 
glucose  employing  Raman  spectroscopy  on AH has 
been  previously suggested.3 Preliminary  work  has 
demonstrated  that  mixtures of the  primary AH 
metabolites  can  be  distinguished  from  one  another in 
water  solution^.^ Techniques  have  been  described  to 
hopefully  increase Raman sensitivity  and  allow the 
measurement of these metabolites  at  laser  intensities 
commiserate with in  vivo safety  constraints.516.  Reliable 
measurement of glucose  at  physiologic  levels  and  under 
physiological  conditions with Raman  spectroscopy  has 
only  recently  been described.'~~ 

The  goals of this study are  to  determine  whether (1 )  
Raman  spectra  extracted  from  rabbit  aqueous  humor  can 
provide a reliable  measure of glucose  concentration 
across  ranges  commonly  encountered in hypoglycemic, 
healthy,  and  diabetic states; (2) the  obscuring  effect of 
broadband  background  apparent in AH samples  can be 
eliminated  using a spectral  excitation  offset  strategy in 
combination with multivariate  and  artificial  neural  network 
signal  processing  algorithms;  and, (3) simple  non-linear 
artificial  neural  network  techniques  can  generate a 
Bayesian  probability  estimating  the  reliability of a single 
sample  measurement. 
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MAIN SECTION 

RAMAN SPECTROSCOPY - This vibrational 
spectroscopy  technique is of considerable  interest  to 
the  astrobiology  community as a probe  instrument for 
extraterrestrial  detection of DNA and  aromatic  amino 
acids9  and  to  the  general  medical  community  for the 
noninvasive in vivo detection of neoplastic  tissue.10 
Raman  spectral  bands  are  considerably  narrower  than 
those  produced in classical  infrared  spectral 
experiments,  making  possible  much  more specific 
signatures  characterizing a target  molecule. In addition, 
Raman  excitation in the  near  infrared  region (700- 
1300nm) encounters minimal fluorescence in most 
biological aqueous  media. 

We have  known  for  the  past f i f t y  years  that during a 
photon  activating event,  the majority  of the photons 
incident  on a target  molecule  scatter with unchanged 
frequency,  while a small  proportion  (one in lo9 photons) 
of light scatters with a shift in photon  energy. This Raman 
shift occurs if photon  energy  transfers  to  (or  from) the 
target  molecule during an inelastic  collision. The 
resulting  vibrational  spectra  produced  reveals  both the 
state of the  atomic  nuclei  and  the  chemical  bonding 
within a molecule, as well as the  interactions  between the 
molecule  and its local  chemical  environment. 

Attempts to employ Raman techniques to directly 
measure  glucose  concentration in serum,  plasma,  and 
whole  blood  have  met with encouraging success in 

vitf0.l 1112913 Unfortunately,  efforts  to  utilize these 
techniques in vivo have  met with considerable  difficulty. 
Whole  blood  contains  numerous  Raman-active  biological 
molecules. In aqueous humor (AH), the  glucose 
signature  competes  against  relatively  few.  Raman-active 
substances. The  four  dominant,  Raman-active  molecules 
in AH are  (concentrations  are for rabbit AH) glucose (97 
mg/dL), lactate (84 mg/dL),  urea (36 mg/dL), and 
ascorbate (16 mg/dL).  There is also a small  amount of 
protein (26 mg/dL) capable of producing  fluorescence 
activity in sufficient  strength to diminish Raman  signal  to 
noise  ratios.  Raman  spectra  from AH specimens of 
rabbits  and  humans, as Well as spectra  obtained  through 
fresh  excised  rabbit corneas,  demonstrate  detectable 
peaks of activity  attributed  to  glucose,  lactate,  urea, 
amino  acids;  and  proteins.'  Extracting  one  or  more of 
these components  demands  the  use of multivariate 
analysis  statistical  techniques. 

OFFSET TECHNIQUE - Initial  pilot studies in our 
laboratoty  demonstrated  that we  could  reliably detect 
physiological  glucose  levels in artificial aqueous humour 
solutions.8 An artificial aqueous humor was designed to 
provide  random  fluctuations in concentratio'n  for  the  four 
major  optically  active AH components  across a range of 
concentrations from 1/2  to 13X normal  values  for  rabbit. 
Metabolite  levels in this range  can  be seen in healthy 
subjects as well as in hypoglycemia  and diabetes 
(glucose),  renal  failure (urea), and  lactic  acidosis  (lactate). 
The analysates  were  dissolved in pH buffered 
physiological  saline.  Variation in the  other  three 
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Figure 1 .  This flow chart  for  signal  acquisition  and  processing  depicts  the  production of Raman spectra with excitation  at  either 
785nm or  at an  offset (785+&), smoothing  accomplished  using a Savisky-Golay second derivative,  determination of optimal  correlation 
regions in the spectral set, and delivery of multifactor  analysis output to the input layer of a  non-linear ANN. The ANN configuration is 
the  original  backpropagation  algorithm with linear  feature  extraction  accomplished by the direct input from input nodes to output  and the 
non-linear  component  extracted by a hidden  layer  node. In this case the  final  output  produces  a  non-linear  least squares fit to the data. 
The  addition of a second output  node  and  the  creation of two discrete classes for glucose  levels (e.g., normal  and hyperglycemic) 
converts  the  algorithm to a  Bayesian  estimator. In this case the ANN calculates  the probability  that a  particular  vector  belongs to either 
of the two classes. 



analysates  can  dramatically  alter  glucose  estimation. A 
multivariate  analysis  and  neural  network  strategy 
adequately  extracted  the  glucose  signature from such 
solutions. 

When glucose,  lactate,  ascorbate,  and  urea  were  mixed 
at  concentrations  approximating  normal  levels, the 
composite  Raman  signature  evidenced  marked  similarity 
to that of the  rabbit AH. However,  the  rabbit  spectra  also 
contained  evidence of broadband  fluorescence  and 
elevated  lactate  activity. 

Partial  compensation  for  such  activity  can  be  obtained 
using standard first and  second  derivative techniques, 
such as the  well-known  Savitsky-Golay  algorithm 
employed in this study. A more  direct  experimental 
approach of great utility involves  acquiring  two  spectra for 
each  sample.  The first is obtained with an  excitation 
frequency  of, in our case, 785nm. The excitation 
wavelength is then offset slightly (with power  adjusted to 
maintain a constant sample exposure). The offset is 
empirically  determined to resolve  the  most  prominent 
spectral  line for the  system. In our  samples this was the  
urea  line  at 1002 cm-l. The  subtraction of these two 
spectra. nulls t he  confounding  broadband  activity  and 
converts  true  spectral  peaks  to  biphasic  signatures. 

MUTIVARIATE ANALYSIS - The  difficulties  inherent in 
identifying  and  quantifying  individual  components  of 
biological  mixtures using Raman  spectral  analysis are 
well-documented  and  have  spawned a wide variety  of 
multivariate  analysis techniques. For  our  multivariate 
algorithm  we  have  chosen the partial  least squares (PLS) 
technique,  an  analysis  and  spectral  decomposition 
algorithm  that,  unlike  principal  component  analysis 
(PCA), uses  concentration  information  to  calculate the 
eigenvectors. 

In our design,  test  and  training  samples  were put into a 
"round-robin"  or  autocorrellation  training  mode to 
iteratively  employ a l l  but one of the  sample set in the 
minimization  and  eigenvector  extraction  process.  Hence, 
the  system  trains  on  all but one of the  samples,  estimates 
the  glucose  level in that  sample,  then  rotates  the test 
sample  back  into  the  general  pool  and  repeats the cycle 
until all  samples  have  served as an  unknown  test  subject. 
In this manner,  the  system is masked  for the 
concentration of analysates in each  unknown  sample. 
PLS  extracts only the  linear  interactions  evident in a 
system.  Since we  know so little  at this point  about the 
precise  interactions of t h e  metabolites in AH particularly 
during pathological  clinical states, a more  general 
purpose  and  robust  non-linear  multivariate  technique is 
required.  Preliminary  work in the  laboratory of the  senior 
author  has  demonstrated  that  certain  artificial  neural 
networks (ANNs) are a  super-set of multivariate 
techniques  and  can  elicit  both  linear  and  non-linear 
interactions.  The  factor scores  generated by a 

multivariate  analysis  technique  such as PLS or PCA can 
serve as the input vector  to  the ANN. 

ARTIFICIAL NEURAL NETWORKS - A N N s  such as the 
backpropagation  algorithm,  while  originally  modelled 
after  biological  systems, are actually  best  conceptualised 
and  implemented as stochastic  gradient  descent  search 
algorithms using a non-linear  transfer  function.  Such  an 
ANN can  be  proved a  superset of classical  signal 
processing  techniques  such as Fourier  and  multivariate 
ana1y~is.l~ In a training sequence, ANN outputs  are 
compared  to  known  classifications using some cost 
function,  often 

E = 1/2Z(O~&$ 

During training, E is minimized with respect  to  the  free 
parameters,  the  weights wq 

AWil(t+l) = -q 6c/s~ip ctAWil(t) 

where  the  learning  coefficient, q, and  the  momentum, a, 
control  the  rate of learning (these depend  primarily  on 
data  set  size and  the  roughness of the  solution 
landscape. 

To train a network, we divide  an  initial  data set into 
training  vectors  and test  vectors. For small data sets it is 
best  to  sequentially pull a single  vector  for  testing,  train 
on the  remainder,  test  against  the  unknown,  and  then 
iteratively  repeat  the  process N times  for a data set on N 
vectors. In this way every  vector is tested  without  ever 
being seen by the  algorithm during training.  The  total 
number of weights in the ANN, W, should  be  less  than 
the total  training set  size N, (W<N). Larger  networks will 
simply memorize the  training set, act as  a lookup  table, 
and  perform  poorly when presented with novel  samples. 
ANN output  through a single  node  produces a non-linear 
least squares fit to the  data In this study, the  net  trains 
against  the  predicted  glucose  levels using nine PLS 
factor scores and  then  estimates  the  unknown  glucose 
level. 

In this study we  have  employed  the  classical 
backpropagation  configuration  identified by Rumelhart, 
et  al.15 with the input nodes (plus a bias node) 
connecting  both  directly  to  the  output  node  and 
indirectly  via  an  intermediate  hidden  layer (see Figure 1 ) .  
This configuration,  often  overlooked,  simplifies  analysis 
of the  linear (input directly  to  output)  and first order non- 
linear (input to hidden  to  output)  contributions  to the 
least squares fit. Specifically  for this effort we employed 
an ANN with nine input nodes,  a  single  node in the 
hidden  layer,  and a single  output for a [9p; l , l ]  algorithm 
(where "p" denotes  the  connection  of  the prior or input 
layer  directly to the output). Notice this configuration 
provides a total of 21 weights (9 input + 1 bias  connected 



. .  
to 1 hidden  and 1 output, plus 1 weight  connecting the 
hidden  and output nodes). 

Since  the  random  initial  setting of the  weights  make this a 
stochastic  process,  multiple  restarts  can  provide 
statistical  data  on  the  accuracy  of  the output. In clinical 
usage it is critical  that  we supply an assessment of the 
reliability  of a specific  measurement.  Such  an  estimate is 
often  not  available with statistical  constraints  only 
applying  to  the  sample set as a whole  and  providing little 
information  about a particular case. Multivariate  analysis 
and  the superset, artificial  neural  networks,  provide 
techniques for acquiring this information.  One such 
strategy  employs  an ANN to  estimate  the  Bayesian 
probability of the  correct  classification of a sample  vector 
into a discrete  class of vectors,  e.g.  hypoglycemic, 
normal,  or  hypoglycemic. 

BAYESIAN PROBABILITIES - ANN output  can  either be  
single  node to provide a non-linear  lest  squares fit to a 
continuous  dataset, or  multi-nodal  to  provide  discrete 
classifications. An ANN employed using a sigmoidal 
transfer  function in 2-node  output  format  produces t h e  
Bayesian a posterion' probability of correct 
classification.l6  For  example, if the two nodes  produce 
outputs of 0.9 and 0.1 for classes A and B, the ANN is 
reporting a 90% probability  for the vector  to be a member 
of class A. As a check of system  function,  note  that the 
outputs  should sum to 1 .  To  illustrate  the  technique  we 
modified  the  above ANN using four PLS factors as inputs 
to a [4p;l,2] network (see below). 

EXPERIMENTAL METHODS - For  our AH experiments 
we  have  chosen a Raman  excitation  wavelength in the 
near  infrared  region  to diminish extraneous  biological 
fluorescence  and  minimize  tissue  damage.  The  price  for 
these  advantages is a lower  excitation  efficiency since 
the  Raman  event  exhibits  an  inverse  relation  between 
wavelength  and  excitation.  Excitation  at 785 nm was 
accomplished using a Spectra  Physics  model 2040E 
argon  ion  laser with an a l l  lines mirror pumping a CW 
Ti:Sapphire solid state  laser,  Spectra  Physics  model 
3900s. 

The  holographic  probe  head was mounted  on  an 
Olympus BX60 microscope with 1OX objective.  Data 
were  collected using a Princeton  Instruments  MPP-type 
CCD camera with a 1024 by 256 array  cooled with liquid 
nitrogen  to -80 degrees C. This highly efficient  camera 
and CCD recovers  the  efficiency loss due  to  increased 
wavelength.  The  system  employs a Kaiser  Optical 
Systems W1.8 holographic  imaging  spectrograph with 
holographic  filter  and  HoloPlex  transmission  grating. 

As part  of  an  ongoing  investigation  into  nitric  oxide 
metabolism  and  myocardium  protection strategies,  ten 
New  Zealand  white  rabbits  were  sacrificed with a rapid 
exsanguination  technique.  These  animals  had 

experienced  experimental  myocardial  infarction 48 hours 
prior to euthanasia  and  received 50-75 m/kg aspinol. 
Anesthesia  included  ketamine  and  xylazine.  Rabbit AH 
was  obtained from these animals within one  minute of 
sacrifice.  Rabbit AH samples  were kept frozen until 
glucose  levels  could  be  measured 'and Raman 
spectroscopy  performed.  Glucose  concentration in 
rabbit AH samples was measured with a commercial 
glucometer  (Glucometer  Elite@,  Bayer)  and  confirmed 
against  concentration  standards. 

Samples  were  placed in quartz  cuvettes  specifically 
designed to limit sample--volume  to 80 UL and  to  permit 
direct access to the  test  solution  without  traversing 
quartz  walls  or  coverslips.  Data  acquisition  and 
multivariate . analysis  were  accomplished using 
Holograms@  and  Grams@,  commercial  software 
packages  provided by Princeton  Instruments  and 
Galactic  Industries  Corporation,  respectively.  The 
integration  time  for  each  spectra  was 10 seconds with an 
average  power  delivered  to  sample of  30mW. Spectra 
were first obtained using 785 nm excitation,  then 
repeated  after  de-tuning  the  frequency  sufficient  to 
offset  the  pronounced  spectral  peak for urea (1 0 0 2 ~ m - ~ )  
to produce a smooth  biphasic  signature  while 
simultaneously nulling out the broadband  interference. 

A cross-correlational  analysis of the  original  and  offset 
spectra  generated  identified 15 regions  correlating 
significantly  (R2>0.4) with expected  glucose 
concentration. This made it possible  to  implement a 
partial  least squares algorithm  for  data  reduction  and 
calibration using fewer  test  measurements  than  data 
samples. This is particularly  important  when  attempting to 
build a robust  spectral  prediction  algorithm  capable of 
iwithdtanding  the  effect of multi-metabolite 
concentration  variance on spectral  signatures. If a 
classification  algorithm  employs  more  test  measurements 
(in our case, spectral bins) than  data  points,  the  algorithm 
will simply memorize  the  data  and  serve as a lookup  table. 
The  algorithm will correctly  quantify  the  samples  used to 
train it, but have  poor  results  generalizing  to  new  data 
sets. Our ability  to  identify a  subset of  spectral  regions 
significantly  correlated with metabolite  concentration 
levels  allowed us to decrease  the  number of input 
features from 3200 to less than  the  number of metabolite 
samples. 

RESULTS AND DISCUSSION 

To assess the  capability of three  signal  processing 
strategies in a more nearly in  vivo regimen, we lowered 
sample  exposure  time  to 10 seconds and  power 
delivered  to  sample to 30 mW. Special  designed  quartz 
cells,  open to the  Raman  microscope  probe,  were 
employed to allow excitation of 80 UL volume of rabbit 
AH at 785nm, mimicking  the  geometric  Constraints 
imposed by an in  vivo assay. AH samples  were  taken 



within 10 to 60 seconds following  experiment 
termination by cardiac  extraction. The samples  were t h e n  
frozen  for  transport  to  our  laboratory.  Immediately  prior to 
obtaining  Raman signatures,  the  samples  were  warmed 
to room  temperature  and  glucose  levels, [G]e, measured 
using a Bayer  Elite  Clinical  Glucometer.  Figure 2 
demonstrates  the  predictive  ability of the  current  system. 

For a l l  three  strategies we first examined  the  correlation 
coefficients  for a l l  spectral  regions  and  identified 1 5 
spectral  regions with R2 > 0.4  for  use with PLS-1 during 
initial  feature  extraction.  Such a strategy  significantly 
diminished  the degrees of freedom in the  algorithm 
search  from  3200  spectral bins to  389.  Next, a l l  spectra 
were  smoothed using Savitsky-Golay  second  derivative 
across 49 points. 

Figure  2a  presents the outcome of using a single spectra 
for  each  sample  (no  offset  technique  and  no ANN). This 
strategy  produces a Raman spectral  signature  for 
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glucose  capable  of  predicting  expected glucose 
concentration, [Gel. Comparing  the  glucose 
concentration  observed [Go] with the  clinical  glucometer 
results in a correlation coefficient, R2 = 0.76 (n=32) 
across a range  from 37 to 323 mg/dl (2a).  Figure 2b  
shows  the  result of obtaining a second  set of spectra by 
de-tuning  from 785nm sufficient to shift Raman 
signatures the width of the  prominent  urea  peak  (power 
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excitation  offset spectra.  Subtraction of the  primary  and 
offset  spectra  results in a  set of difference  spectra 
capable of  improving /# to 0.90. Finally,  Figure  2c 
demonstrates  the  effect of using the  offset  spectra 
strategy  and  initial  feature  extraction by the  linear PLS-1 
algorithm,  then  employing a non-linear ANN to generate 
the  final  glucose  estimate. In this case  the  correlation 
between [Gel, and [Go] improves  to 0.98. 
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Figure 2. Excitation  of 80 UL volume of  rabbit AH at  785nm  produces  a  Raman  spectral  signature  for glucose  capable of  predicting 
expected  glucose  concentration ,[Gel, with a  Pearson  correlation, R? of 0.76 (n=32)  across  a  range from 37 to 323 mg/dl (Fig 2a). De- 
tuning  from  785nm  sufficient  to shift Raman  signatures the width of the prominent  urea  peak while maintaining  power  to  sample  at  30mW 
produces  an  excitation  offset  spectra.  Subtraction of the primary  and offset  spectra results in a set of difference  spectra  capable  of 
improving #to 0.90. Figure  2c  demonstrates the effect of using the offset  spectra  strategy  and  initial  feature  extraction by the linear 
PLS-1 algorithm, then employing  a  non-linear ANN to  generate the final glucose  estimate. In this case the correlation between [Gd, and 
[Go] improves to 0.98. Collection time for each  sample  was 10 seconds and the resulting  spectra  were pre-processed using the 
Savitsky-Golay second derivative  algorithm. 

To increase  the  potential  clinical utility of this system  we 
investigated a strategy  for assessing the  reliability of a 
specific  measurement.  Recall  that ANN output c a n  either 
be  single  node  to  provide a non-linear  lest  squares fit to 
the  dataset, or  multi-nodal  to  provide  discrete 
classifications. We reconfigured  our ANN using a 
sigmoidal  transfer  function in 2-node output format to 
produce  the  Bayesian a posteriori probability of correct 
classification for a single  sample  into  one of two discrete 
classes. To minimize the  number of weights in this new 
network  we  determined  that  the first four PLS-1  factors 
provided  better  than 90% of the  classification 

information. We constructed an ANN with four  nodes in 
the input layer  and a single node in the hidden  layer 
resulting in a [4p;1,2] structure.  The  data set was 
arbitrarily  divided  into two sets with one  containing 15 
samples with glucose  level [Go] < 160 mg/dL and the 
other  set  containing 17 samples with [Go] 2 1 6Omg/dL. 
Note  that it is important  to  keep  the two classes 
approximately  balanced  for  membership  size. ANNs will 
extract BOTH vector difference information AND 
frequency  distribution. This can  be of great utility for 
large  data sets comprising a significant  sampling of real 
world data. For small  data sets of indeterminate 



samples with glucose  level [Go] < 160 mg/dL and the 
other  set  containing 17 samples with [Go] 2 lGOmg/dL. 
Note  that it is important  to  keep  the  two classes 
approximately  balanced  for  membership  size. ANNs w i l l  
extract BOTH vector  difference  information AND 
frequency  distribution. This can  be  of  great utility for 
large  data sets comprising a significant  sampling  of  real 
world data. For small data sets of  indeterminate 
frequency  accuracy it will skew  estimates  significantly. 
Since we simply want  to  know  how  the ANN assess t h e  
features  contained in a specific  sample, we wish to 
minimize  frequency  information during these preliminary 
trials.  Training  and  testing  was  again  performed in 
autocorrelation  mode with each  test  sample  remaining 
unknown  to  the ANN during training. 

The ANN agreed with the  classification of 26 of 32 of t h e  
samples  into  the  discrete high and  low categories. As 
noted in earlier  work in the  laboratory of the  senior 
author,  the ANN probabilities in correct  classifications 
(PC) were  higher  than during incorrect  classifications  (Pi): 
PC = 0.72M.14,  n=26; Pi = 0.64k0.12. Also as 
expected  from a well-behaved system, the  node  outputs 
sum to 1.  Three of the six classification  discrepancies 
occur  at  the  boundary  region with [Go] = 145, 145, and 
164 mg/dL and simply reflect  sensitivity  limits.  However, 
three  other  anomalous  vectors  are  far  removed  from the  
boundary with [Go] = 1'91, 209, and 223 mg/dL. 
Examination of these vectors  revealed  anomalies in the 
PLS-1 factors  that  clearly  indicate  the ANN correctly 
refused  to  classify these vectors as members of t h e  
higher  glucose  level set. In a clinical  setting  such a 
discrepancy would serve as an  appreciated  warning  that 
the  data  need  to  be  re-obtained  to  resolve  the  conflict. 

C O N C L U S I O N  

In this study we  have  demonstrated (1) Raman spectra 
extracted  from  rabbit aqueous humor  can  provide a 
reliable  measure of glucose  concentration  across  ranges 
commonly  encountered in hypoglycemic,  healthy,  and 
diabetic states; (2) the  obscuring  effect of broadband 
background  apparent in AH samples  can  be  eliminated 
using a spectral  excitation  offset  strategy in combination 
with multivariate  and  artificial  neural  network  signal 
processing  algorithms; and, (3) simple  non-linear  artificial 
neural  network  techniques  can  generate a Bayesian 
probability  estimating  the  reliability of a single sample 
measurement. 

We find these initial  results  most  encouraging  and agree 
with others  that  Raman  spectroscopy of aqueous humor 
in the  near  infrared  combined with multifactor  analysis 
techniques  constitutes a new  technology  capable of 
estimating  levels of  blood glucose  and  perhaps  other 
metabolites by non-invasive  analysis of AH. 

The  rabbit AH signature in this initial study may also  be 
complicated by the  optical  activity of the drugs 
introduced as part  of  surgical  intervention  and the 
cardiovascular  experimental  procedure.  Potential 
Raman-active  molecules  include  aspirin,  ketamine, 
xylazine,  pentobarbital,  and  heparin.  We'  are  currently 
investigating  the  Raman  response of these and  several 
other  potentially  confounding substances. 

R is of  note in passing but beyond  the scope  of this 
article,  that our blood  and AH glucose  level 
measurements  confirm  the  previously  reported  elevated 
glucose  levels in rabbit AH in response  to  xylazine  and is 
the  subject  of  an  ongoing  investigation.  Xylazine is 
commonly  utilized in conjunction with ketamine as an 
anesthetic  in  veterinary  surgical  procedures. It appears to 
interfere with the  release of insulin by pre-synaptic 
stimulation  of  alpha-2  receptors in the  beta  cells  found in 
the Langerhans islets of the  pancreas. This results in 
elevated  blood  glucose  levels  for two to six hours.16 

We are currently  proceeding  to  determine  the minimum 
laser  power  and  data  acquisition  time  required  for in vivo 
application. We expect  that  clinical utility of this 
methodology w i l l  require  another  order of magnitude 
reduction in power  and  integration time below  current 
levels of 30mW and 10s. We suspect 1 mW and 1s w i l l  be 
the  gold  standard  for  clinical  acceptance of this 
technology.  Studies are currently  underway to elucidate 
the  temporal  correlation  between  glucose  levels in AH 
and  blood  concentrations in a rabbit  model. 
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